Geometría de Curvas y Superficies

- $\bullet\,$ Cada una de las preguntas se empieza en una hoja distinta.
- Cada apartado se puntúa sobre 10.
- La nota del apartado [1]b) es el máximo de lo obtenido en dicho apartado y de la nota del trabajo de curvas planas.
- La nota del apartado [1]c) es el máximo de lo obtenido en dicho apartado y de la nota del trabajo de curvas planas.
- La nota del apartado [2]b) es el máximo de lo obtenido en dicho apartado y de la nota del trabajo de curvas espaciales.
- La nota del apartado [2]c) es el máximo de lo obtenido en dicho apartado y de la nota del trabajo de curvas espaciales.
- Si P_N^n es la nota del apartado [N]n), la nota global se calcula con la siguiente fórmula:

$$\frac{3(P_1+P_2)+4P_3}{10}, \quad P_N=\frac{P_N^a+P_N^b+P_N^c}{3}, \quad N=1,2,3.$$

- Razona todas las respuestas.
- [1] a) Sea $\mathbf{x}: (-1,1) \to \mathbb{R}^2$ una curva parametrizada.
 - (i) Enuncia el Teorema Fundamental de las Curvas Planas.
 - (ii) Construye una curva $\mathbf{y}:(-1,1)\to\mathbb{R}^2$ tal que $\kappa_{\mathbf{y}}=-2\kappa_{\mathbf{x}}$
 - (iii) Sea L la recta normal a \mathbf{x} en t=0; sea π^+ el semiplano cerrado determinado por L y $\mathbf{t}(0)$. ¿Es posible que la imagen de \mathbf{x} esté en π^+ ?
 - b) Sea $0 < \varepsilon \le \infty$, sea $\mathbf{x} : (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ una curva plana regular. Sea $\mathbf{y} : (-\sqrt[5]{\varepsilon}, \sqrt[5]{\varepsilon}) \to \mathbb{R}^2$ la curva dada por $\mathbf{y}(t) := \mathbf{x}(t^5)$.
 - (i) Comprueba que \mathbf{y} es regular en $(-\sqrt[5]{\varepsilon}, 0) \cup (0, \sqrt[5]{\varepsilon})$, calcula ahí $\kappa_{\mathbf{y}}$ y también $\lim_{t\to 0} \kappa_{\mathbf{y}}(t)$.
 - (ii) Sea $h: J \to (-\varepsilon, \varepsilon)$ una biyección C^{∞} tal que $0 \in J$, h(0) = 0, $h' \ge 0$ y h'(t) = 0 si y solo si t = 0. Repite el apartado anterior para $\mathbf{x} \circ h$.
 - (iii) Sea $\mathbf{z} : \mathbb{R} \to \mathbb{R}^2$ la curva dada por $\mathbf{z}(t) := (3t^2, 2t^3)$. Comprueba que \mathbf{z} es regular en $\mathbb{R} \setminus \{0\}$, calcula ahí $\kappa_{\mathbf{z}}$ y también lím $_{t\to 0}$ $\kappa_{\mathbf{z}}(t)$.
 - (iv) Deduce que z no se puede expresar como las curvas que aparecen en (ii).
 - c) Sea $\mathbf{x}: \mathbb{R} \to \mathbb{R}^2$ una curva regular cerrada de periodo T>0. La curvatura total de \mathbf{x} se define como

$$\kappa_{\mathbf{x}}^{\text{tot}} := \int_{0}^{T} \kappa_{\mathbf{x}}(t) \|\mathbf{x}'(t)\| dt.$$

- (i) Demuestra que la curvatura total no cambia si reparametrizamos la curva, es decir, si definimos $\mathbf{y} := \mathbf{x} \circ h$, donde $h : \mathbb{R} \to \mathbb{R}$ es un difeomorfismo creciente tal que existe T' > 0 cumpliendo h(t+T') = h(t) + T, entonces $\kappa_{\mathbf{x}}^{\mathrm{tot}} = \kappa_{\mathbf{v}}^{\mathrm{tot}}$.
- (ii) Demuestra que $\kappa_{\mathbf{x}}^{\text{tot}} = 2k\pi$ para algún $k \in \mathbb{Z}$.
- (iii) Haz lo mismo con la curva $\mathbf{x} : \mathbb{R} \to \mathbb{R}^2$,

$$\mathbf{x}(t) := \cos t(1, \sin t).$$

- [2] a) Sea I un intervalo abierto y sea $\mathbf{x}: I \to \mathbb{R}^3$ una curva birregular.
 - i) Define el contacto de ${\bf x}$ con un plano y qué es el plano osculador.
 - ii) Demuestra que el orden de contacto de una curva en $t=t_0$ con su plano osculador en $t=t_0$ es al menos 3; ¿cuándo es mayor?
 - iii) Considera la curva $\mathbf{y} := \mathbf{x} + \mathbf{b_x}$. Demuestra que \mathbf{y} es birregular.
 - b) Sean $I \subset \mathbb{R}$ un intervalo abierto y $\mathbf{x}: I \to \mathbb{R}^3$ una curva birregular. Sea A una matriz 3×3 inversible y sea $\mathbf{y}: I \to \mathbb{R}^3$ la curva dada por $\mathbf{y}(t) := A\mathbf{x}(t)$.

- i) Supón que la ${\bf x}$ está parametrizada por el arco y calcula ${\bf t_y}$ en función de los datos de ${\bf x}$
- ii) Si A es ortogonal, calcula $\mathbf{n_v}$, $\mathbf{b_v}$, $\kappa_{\mathbf{v}}$, $\tau_{\mathbf{v}}$ en función de los correspondientes invariantes de \mathbf{x} .
- iii) Justifica que los resultados obtenidos en el apartado anterior siguen siendo válidos aunque \mathbf{x} no esté parametrizada por el arco.
- c) Dado b > 0 considera la esfera de ecuación $x^2 + y^2 + z^2 = b^2$ y el cilindro de ecuación $x^2 + y^2 = bx$.
 - i) Construye una curva regular cerrada \mathbf{x} cuya imagen es la intersección del elipsoide y del cilindro.
 - ii) Para los valores de $t \in \mathbb{R}$ que cumplen $\mathbf{x}(t) = (b, 0, 0)$ encuentra el triedro de Frenet.
 - iii) Sean t_0, t_1 dos valores como en el apartado anterior que no difieran por un múltiplo del periodo de \mathbf{x} . Justifica que $\kappa(t_0) = \kappa(t_1)$ y $\tau(t_0) = -\tau(t_1)$ sin calcular ni la curvatura ni la torsión.
 - iv) Encuentra una elipse cuya longitud coincida con la longitud de la curva \mathbf{x} .
- [3] a) Sea S una superficie regular, $\mathbf{p} \in S$, y $\mathbf{x}_i : U_i \to S$, i = 1, 2, dos cartas tales que $(0, 0) \in U_1 \cap U_2$ y $\mathbf{p} = \mathbf{x}_i(0, 0)$.
 - i) Define $T_{\mathbf{p}}S$ y campos coordenados
 - ii) Demuestra que $\forall (u_i, v_i) \in U_i$ los campos coordenados de \mathbf{x}_i , evaluados en (u_i, v_i) , forman una base de $T_{\mathbf{x}_i(u_i, v_i)}S$. Para $(u_1, v_1) = (u_2, v_2) = (0, 0)$ da la matriz del cambio de las dos bases de $T_{\mathbf{p}}S$.
 - iii) Define superficie orientable.
 - iv) Da ejemplos de superficies orientables.
 - v) Demuestra que si $\mathbf{x}_1(U_1) \cap \mathbf{x}_2(U_2)$ es conexo, entonces $\mathbf{x}_1(U_1) \cup \mathbf{x}_2(U_2)$ es orientable.
 - vi) Explica por qué si $\mathbf{x}_1(U_1) \cap \mathbf{x}_2(U_2)$ no es conexo, entonces no se puede garantizar que $\mathbf{x}_1(U_1) \cup \mathbf{x}_2(U_2)$ sea orientable.
 - b) Sea $\gamma: [-1,1] \to \mathbb{R}^2$ una curva regular simple dada por $\gamma(t) := (x(t), y(t))$, con x(t) > 0, $\forall t \in (-1,1)$ y x(-1) = x(1) = 0. Considera la aplicación

$$\mathbb{R} \times (-1,1) \xrightarrow{\mathbf{x}} \mathbb{R}^3$$
$$(u,v) \longmapsto (x(v)\cos u, x(v)\sin u, y(v))$$

y sea $S := \mathbf{x}(\mathbb{R} \times (-1, 1)).$

- (i) Demuestra que γ es un homeomorfismo sobre la imagen
- (ii) Demuestra que \mathbf{x} es una superficie parametrizada.
- (iii) Da condiciones suficientes para que \overline{S} sea superficie regular.
- c) Sea $\boldsymbol{\gamma}_a:\mathbb{R}\to\mathbb{R}^3$ la hélice circular dada por

$$\gamma_a(t) := (\cos t, \sin t, at)$$

con a > 0. Consideremos la aplicación $\mathbf{x}_a : \mathbb{R}^2 \to \mathbb{R}^3$ dada por $\mathbf{x}_a(u, v) := \boldsymbol{\gamma}_a(u) + v \mathbf{n}_{\boldsymbol{\gamma}_a}(u)$. Sea $S_a := \mathbf{x}_a(\mathbb{R}^2)$.

- (i) Demuestra que S_a es una superficie regular y que es reglada.
- (ii) Encuentra la línea de estricción de esta superficie reglada y calcula todas las rectas que están contenidas en S_a .
- (iii) Encuentra una homotecia que lleve S_a a S_1 .